1,631 research outputs found

    Symbol Synchronization for SDR Using a Polyphase Filterbank Based on an FPGA

    Get PDF
    This paper is devoted to the proposal of a highly efficient symbol synchronization subsystem for Software Defined Radio. The proposed feedback phase-locked loop timing synchronizer is suitable for parallel implementation on an FPGA. The polyphase FIR filter simultaneously performs matched-filtering and arbitrary interpolation between acquired samples. Determination of the proper sampling instant is achieved by selecting a suitable polyphase filterbank using a derived index. This index is determined based on the output either the Zero-Crossing or Gardner Timing Error Detector. The paper will extensively focus on simulation of the proposed synchronization system. On the basis of this simulation, a complete, fully pipelined VHDL description model is created. This model is composed of a fully parallel polyphase filterbank based on distributed arithmetic, timing error detector and interpolation control block. Finally, RTL synthesis on an Altera Cyclone IV FPGA is presented and resource utilization in comparison with a conventional model is analyzed

    Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree.

    Get PDF
    A homomorphism from a graph G to a graph H is locally bijective, surjective, or injective if its restriction to the neighborhood of every vertex of G is bijective, surjective, or injective, respectively. We prove that the problems of testing whether a given graph G allows a homomorphism to a given graph H that is locally bijective, surjective, or injective, respectively, are NP-complete, even when G has pathwidth at most 5, 4 or 2, respectively, or when both G and H have maximum degree 3. We complement these hardness results by showing that the three problems are polynomial-time solvable if G has bounded treewidth and in addition G or H has bounded maximum degree

    Methods for High Power EM Pulse Measurement

    Get PDF
    There are some suitable methods for the measurement of ultra-short solitary electromagnetic pulses that can be generated by high power pulsed generators. The measurement methods properties have to correspond to the fact whether we want to measure pulses of voltage, current or free-space electromagnetic wave. The need for specific measurement methods occurred by the development of high power microwave pulse generator. Applicable methods are presented in this paper. The method utilizing Faraday\'s induction law allows the measurement of generated current. For the same purpose the magneto-optic method can be utilized, with its advantages. For measurement of output microwave pulse of the generator the calorimetric method was designed and realized

    Improved accuracies for satellite tracking

    Get PDF
    A charge coupled device (CCD) camera on an optical telescope which follows the stars can be used to provide high accuracy comparisons between the line of sight to a satellite, over a large range of satellite altitudes, and lines of sight to nearby stars. The CCD camera can be rotated so the motion of the satellite is down columns of the CCD chip, and charge can be moved from row to row of the chip at a rate which matches the motion of the optical image of the satellite across the chip. Measurement of satellite and star images, together with accurate timing of charge motion, provides accurate comparisons of lines of sight. Given lines of sight to stars near the satellite, the satellite line of sight may be determined. Initial experiments with this technique, using an 18 cm telescope, have produced TDRS-4 observations which have an rms error of 0.5 arc second, 100 m at synchronous altitude. Use of a mosaic of CCD chips, each having its own rate of charge motion, in the focal place of a telescope would allow point images of a geosynchronous satellite and of stars to be formed simultaneously in the same telescope. The line of sight of such a satellite could be measured relative to nearby star lines of sight with an accuracy of approximately 0.03 arc second. Development of a star catalog with 0.04 arc second rms accuracy and perhaps ten stars per square degree would allow determination of satellite lines of sight with 0.05 arc second rms absolute accuracy, corresponding to 10 m at synchronous altitude. Multiple station time transfers through a communications satellite can provide accurate distances from the satellite to the ground stations. Such observations can, if calibrated for delays, determine satellite orbits to an accuracy approaching 10 m rms

    Phase Change Materials for Thermal Management of IC Packages

    Get PDF
    This paper deals with the application of phase change materials (PCM) for thermal management of integrated circuits as a viable alternative to active forced convection cooling systems. The paper presents an analytical description and solution of heat transfer, melting and freezing process in 1D which is applied to inorganic crystalline salts. There are also results of numerical simulation of a real 3D model. These results were obtained by means of the finite element method (FEM). Results of 3D numerical solutions were verified experimentally

    New Directions in Modeling the Lighting Systems

    Get PDF
    This paper presents information about new directions in the modeling of lighting systems, and an overview of methods for the modeling of lighting systems. The new R-FEM method is described, which is a combination of the Radiosity method and the Finite Elements Method. The paper contains modeling results and their verification by experimental measurements and by the Matlab simulation for this R-FEM method

    Cluster Approximation for the Farey Fraction Spin Chain

    Full text link
    We consider the Farey fraction spin chain in an external field hh. Utilising ideas from dynamical systems, the free energy of the model is derived by means of an effective cluster energy approximation. This approximation is valid for divergent cluster sizes, and hence appropriate for the discussion of the magnetizing transition. We calculate the phase boundaries and the scaling of the free energy. At h=0h=0 we reproduce the rigorously known asymptotic temperature dependence of the free energy. For h0h \ne 0, our results are largely consistent with those found previously using mean field theory and renormalization group arguments.Comment: 17 pages, 3 figure

    Asymptotics of the Farey Fraction Spin Chain Free Energy at the Critical Point

    Full text link
    We consider the Farey fraction spin chain in an external field hh. Using ideas from dynamical systems and functional analysis, we show that the free energy ff in the vicinity of the second-order phase transition is given, exactly, by ftlogt12h2tforh2t1. f \sim \frac t{\log t}-\frac1{2} \frac{h^2}t \quad \text{for} \quad h^2\ll t \ll 1 . Here t=λGlog(2)(1ββc)t=\lambda_{G}\log(2)(1-\frac{\beta}{\beta_c}) is a reduced temperature, so that the deviation from the critical point is scaled by the Lyapunov exponent of the Gauss map, λG\lambda_G. It follows that λG\lambda_G determines the amplitude of both the specific heat and susceptibility singularities. To our knowledge, there is only one other microscopically defined interacting model for which the free energy near a phase transition is known as a function of two variables. Our results confirm what was found previously with a cluster approximation, and show that a clustering mechanism is in fact responsible for the transition. However, the results disagree in part with a renormalisation group treatment

    Lower Bounds for the Graph Homomorphism Problem

    Full text link
    The graph homomorphism problem (HOM) asks whether the vertices of a given nn-vertex graph GG can be mapped to the vertices of a given hh-vertex graph HH such that each edge of GG is mapped to an edge of HH. The problem generalizes the graph coloring problem and at the same time can be viewed as a special case of the 22-CSP problem. In this paper, we prove several lower bound for HOM under the Exponential Time Hypothesis (ETH) assumption. The main result is a lower bound 2Ω(nloghloglogh)2^{\Omega\left( \frac{n \log h}{\log \log h}\right)}. This rules out the existence of a single-exponential algorithm and shows that the trivial upper bound 2O(nlogh)2^{{\mathcal O}(n\log{h})} is almost asymptotically tight. We also investigate what properties of graphs GG and HH make it difficult to solve HOM(G,H)(G,H). An easy observation is that an O(hn){\mathcal O}(h^n) upper bound can be improved to O(hvc(G)){\mathcal O}(h^{\operatorname{vc}(G)}) where vc(G)\operatorname{vc}(G) is the minimum size of a vertex cover of GG. The second lower bound hΩ(vc(G))h^{\Omega(\operatorname{vc}(G))} shows that the upper bound is asymptotically tight. As to the properties of the "right-hand side" graph HH, it is known that HOM(G,H)(G,H) can be solved in time (f(Δ(H)))n(f(\Delta(H)))^n and (f(tw(H)))n(f(\operatorname{tw}(H)))^n where Δ(H)\Delta(H) is the maximum degree of HH and tw(H)\operatorname{tw}(H) is the treewidth of HH. This gives single-exponential algorithms for graphs of bounded maximum degree or bounded treewidth. Since the chromatic number χ(H)\chi(H) does not exceed tw(H)\operatorname{tw}(H) and Δ(H)+1\Delta(H)+1, it is natural to ask whether similar upper bounds with respect to χ(H)\chi(H) can be obtained. We provide a negative answer to this question by establishing a lower bound (f(χ(H)))n(f(\chi(H)))^n for any function ff. We also observe that similar lower bounds can be obtained for locally injective homomorphisms.Comment: 19 page

    Numerical Modeling of Magnetic Field Deformation as Related to Susceptibility Measured with an MR System

    Get PDF
    The possibility is studied of numerical modeling of magnetic field deformations in the environment of measured diamagnetic and paramagnetic samples for the purposes of studying magnetic resonance (MR) image deformations owing to the susceptibility of heterogeneous materials (objects). The verification was realized using a simple sample configuration (circular plate), and the numerically modeled cross-sections were compared with the experimentally obtained values of the magnetic field measured by the MR gradient echo technology. The results show that it is possible – via a technical calculation – to determine a magnetic field deformation in the environment of complex-shaped or non-homogeneous structures in the MR experiments
    corecore